

Possibility on GPM GV Joint Research of Korea

Mi-Lim Ou

Korea Meteorological Administration (KMA)
National Institute of Meteorological Research
Seoul, Korea

Contents

- Background and Issues
- Climate on Precipitation in Korea
- GPM Functional Concept
- National Observation Network in Korea
- Intensive Observation Sites
- Research Activity in Korea
- Plan for GPM GV in Korea
- Summary and Recommendations

Background

- In Korea, the needs for global precipitation observation with GPM were init ed since 2001.
 - ◆ In 2002, NASA/GPM team visited Korea and proposed to join GPM program.
 - Has been discussed to participate in the GPM program among KARI, KMA ar scientists in universities.
- The preliminary study has been performed in 2003.
 - Topic: "Feasibility Study on Maximizing the Benefits from GPM Project"
 - In the study,
 - Investigated necessities of GPM project in the context of academic and social barounds
 - Defined GPM-related core technologies and application areas in Korea
 - Prepared the roadmap for the development of the core-technologies
- KMA has participated in the previous GPM GV workshops in 2003 & 2005.
 - KMA expressed already the plan for the Korean GPM based on the intensive ound observation network at that time.

Issues

Main Weather Phenomena over Korea

- June-July: Rainy season due to Chang-ma front, single storms, MCS...
 - Recently, the rainy season comes early and ends later than normal.
- End of August September : Typhoon
- December February : Cold and snow season

Increase of heavy rainfall events & suddenly developed stor

- Needs from forecasters have been increased to monitor satellite-based rall distribution with high resolution in time and space.
- Plan to produce total rainfall map by merging satellite-based rainfall and rainfall
 - Using multi-sensor data including GEO-IR and LEO-MW
 - Starting preliminary study this year.

Climate on Precipitation over Korea

Accumulated Days of Precipitation and Heavy Rainfall for 14 Sites in Korea

Rainy Days over 80 mm/day during Summer, 1979-20

GPM GV Functional Concept in Korea

National Observation Network in Korea

Dense and Diverse Observation Network

- Automatic Weather Stations (AWS)
 - 541 sites on 13 km spacing, 1 min interval
 - 71 Automatic Snow Depth Measurement System (ASDMS)
- Radar Network
 - 12 sites (1 potable for research), 10 Lightening detect sites
- Buoy Network
 - 5 sites
- Intensive Observation Sites
 - 2 sites, KEOP site at Haenam and CPOS site at Daegwallyeong
- And...
 - 1-base station of Oceanic Meteorological Observation (BOMO)
 - 1-weather vessel in operation

Diverse Conventional Observation

Conventional Weather Stations

	No. of station	No. of daily ob servation	
Surface	76	8-24	
Upper-air	10	2-4	
Wind Profiler	10	144	
Lightening Obs ervation	21	Every 1 min	
Moored Buoy	5	24	

Dense 1-min Raingauge Network

Automatic Weather Station (AWS)

No. of Stations : 541Time Interval : 1 min

• Spacing: ~13 km

Snow Depth Observation

Automatic Snow Depth Measurement System (ASDMS)

No. of Station: 71

-137 stations by 2010

❖ Time Interval: 10 min

❖ Spacing : ~ 27 km

12-Radar Network in Operation

- No. of Radars: 12
 - 4 C-band, 7 S-band
 - 1 X-band portable in KEOP site
- ❖ Time Interval : 10-min

Intensive Observation Sites

Objectives

KEOP Site for Severe Weather

Korean Enhanced Observation Program

ORG

(Optical Rain Gaug

MRR (Micro Rain Rad

PARSIVEL (Optical Disdrome

- Analyze the severe weather storm using remote sensing instruments
- Research the drop size distributions of cloud and precipitation
- Improve an estimation of radar intensity using the raingauge grid observation (5 km, plan)

KEOP-2006

IOP Design

Targeting

- -Thunderstorms,
- Changma-front,
- Thyphoon and so on..

International GPM

Analysis Constant

	Measurement	Target	Range	Val. (R^2)	Obs. Star
PARSIVEL (Disdrometer)	Drop Size & Fall Velocity	Precipitation	0.2 – 25 mm (Diamete r)	0.966	'06.05.18
FSSP (Forward Scattering Sp ectrometer Probe)	Size Distribution	Water Vapor	0.5 – 47 um (Diameter)	1) 31um 2) 0.64	'03.11.27
SVS (Sentry Visibility Sensor)	Visibility	Water Vapor	30 – 16000 m	± 0.075 m	'06.06.15.
MRR (Micro Rain Radar)	Power(dB), Fall V elocity -> Reflectivity, RainRate, LWC	Water Vapor & P recipitable Wate r	Water Content (gram) in a volume of 50 m c olumn	0.84	'05.04.04.
MWR (Microwave Radiometer)	Radiance -> TPW, LWC	Water Vapor & P recipitable Wate r	-	0.88 (clear) 0.79 (cloudy)	'03.11.23
3D AWS 3rd Interna	u, v, w, T, q ational GPM GV	Weather Planning Works	shop, March 4-6, 20	08, Brazil	'05.04.27

CPOS-Observation Data DB

CPOS-Application

3rd International GPM GV Planning Workshop, March 4-6, 2008, Brazil

Application of 1-min Raingauge Data ov er Korea

By B. J. Sohn Seoul National University

Averaged AWS and HRPP rain rates

Averaged Rain Rate [mm/hr] Jun~Aug, 2003~2005

Accumulated frequency of the observed AWS and HRPP rain rates

Black dashed line: AWS

Blue line: TMPA 3B42 Green line: CMORPH

Yellow line: PERSIANN

Red line: NRLB

Accumulated frequency the observed AWS and HRPP rain rates (Grid size: 0.25°, Averaging period: 3hr)

Validation using 1-min AWS data

Correlation Coefficient (AWS time window = ± 10 min)

Averaging Period

RMS Error (AWS time window = ± 10 min)

Contour plots of the correlation, mean bias, and RMSE

3-hourly averaged rain rates (AWS)

3-hourly averaged rain rates (TPMA 3B42)

3-hourly averaged rain rates (CMORPH)

3-hourly averaged rain rates (PERSIANN)

3-hourly averaged rain rates (NRLB)

Harmonic analysis for diurnal variation

Diurnal amplitudes and phases for AWS, TMPA 3B42, CMORPH, and PERSIANN. The length slant of the arrow means the diurnal amplitudes and phases, respectively.

Plans for GPM GV in Korea

According to GPM GV Strategies

[GV Strategy 1] Statistical Validation of Rainfall

- Full sets of dense observation data at KMA can be used for pre-launch gorithm development and post-product evaluation.
 - 1-minute raingauge data for 541 sites (AWS)
 - 10-minute snow depth measurement data (ASDMS)
 - 12-radar network data
- Characterizing the regional observation errors and developing QC procedure

[GV Strategy 2] Physical Validation on Precipitation Process

- Korea is in excellent geographical condition with both mountainous and coas areas, as well as open sea to investigate physical process on precipitation.
- Developing forward/retrieval algorithms and performing data assimilation
- Running 2-intensive observation sites if necessary
- Advancing current algorithms and model performance

[GV Strategy 3] Integrated Hydrometeorology Application

Need more discussion and collaboration

Plans for GPM GV of KMA

Others

Plan for additional extension of Korean observation network

Microwave Radiometer : 2 → 11 in 2008

● ASDMS: $71 \rightarrow 137$ by 2010

Polarized Radar by 2009

Procedure for Implementation

GPM Application Concept in Korea

Summary and Recommendations

- KMA is planning to participate in the GPM GV program to take advantages of global precipitation observation.
 - Korean GPM Plan needs to be elaborated to be submitted by communicating with other groups, not just for meteorological purposes to share the benefits of GPM.
 - Finding collaborating investigators inside/outside of Korea
- There are several excellent conditions in Korea for dense ob servation network, geographical condition for physical valida tion, intensive observation sites, and qualified scientists fro m universities...

Summary and Recommendations

GPM Data Distribution and S/W tools

- Supporting accordingly GPM data, other data for Cal/Val and relate d algorithms to implement the objectives of the research
- Available data sets and algorithms need to be informed regularly

Data Qualification

- Many different instruments, different quality, localized error charact eristics....
- Wonder how to manage them to be equal-qualified.
- Vision and benefits from GPM needs to be shared and open ed to worldwide, not just for the GPM partners....
 - Encouraging involvement of meteorological operational society to c ombine their infrastructures and expertise..

Thank you for listening!!